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0. ABSTRACT

Properties of the Shewhart X-chart for controlling the mean of a
process with a normal distribution are investigated for the situation where
the process variance 02 must be estimated from initial sample data. The
control limits of the X-chart depend on the estimate of 02 and thus, unlike
the case when 02 is known, the X-chart is not equivalent to a sequence
of independent. tests. When 02 is estimated the distribution of the run
length 1s not geometric and cannot be characterized simply in terms of the
probability of a signal af a given point. The average run length (ARL) for
the X-chart is expressed in terms of an integral involving the normal cdf,
and it is shown that the chart signals with probability one, but the ARL
may not be finite if the size of the sample used to estimate 02 is suffi-
ciently small. In addition, certain bounds for the ARL are also derived.
Numerical integration is used to show that the effect of using small sam-
ple sizes in estimating 02 is to increase the ARL and the variance of the

run length distribution.
*This work was supported in part by Grant No. DAAG~29-78-G-~0172 from the
U.S. Army Research Office.

KEY WORDS: i;Chart; Shewhart Chart; Process Control; Control Chart;

Estimated Variance; Economic Model; Average Run Length.




1. INTRODUCTION

Control charts have loug been used to detect changes in the distri-
bution of observations taken from a process that operates continuously
over time. Various criteria have been proposed to measure the perfor-
mance of a control chart when it is used to control a process. These
criteria aid in the design of charts to meet specific objectives and also
serve as a basis for comparing several competing procedures. The purpose
of this paper is to examine some of these criteria in terms of their ap-
propriateness with special reference to the Shewhart X-chart for control-
ling the process mean when the process variance in unknown.

Consider the situation where an independent sequence 31, §2’ e
of random samples is taken at regular intervals from the process,

X = (xil’ Xigs ooo ’xin) being the sample of n observations taken on

the ith occasion. In most cases the distribution of the observations will
depend on one or more parameters represented by 9, which may be vector-
valued. The basic problem is to detect quickly any change in the value

of 9 by using the values of all observations taken up to the current time.
In some situations the initial control value, say 90, for 8 will be known
or specified in advance. In other situations one or more components of

60 may be unknown, and it is necessary to estimate these values using the
observed data.

A process control procedure for detecting shifts away from eo is a
procedure that at time i decides on the basis of Lo Xy vee WXy whether
to continue sampling or to stop and signal that a change has occurred.

As long as the value of & remains constant at 60 we want to continue
sampling, but as soon as a significant shift occurs we want to stop.

If N represents the random time at which the procedure stops and signals,
then it is the distribution of N that determines the properties of the

procedure. In process control terminology, N is called the run Zength.
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As an example of a process control procedure, consider the standard

Shewhart X-chart for detecting shifts in the mean u of a process having
a normal distribution. This procedure signals that a shift has occurred

at the first value of 1 for which

Xi 2 "0 + ko

where Xi is the mean of xil’ xiz, ces ’xin’ Hoy is the target or control
value for the process mean, k is a constant, and o is the process standard
deviation. In what follows it is convenient to express the process mean
in terms of 6 = (u - uo)/;/O, the case U = Mo then corresponding to § = 0. -
If both Mo and 0 are known (or specified), then the distribution of the

run length is geometric with parameter
p(8) = P(X, 2 ug + ko) =1 - (5 + k/n)

since we are, in effect, performing a sequence of "independent tests" where
the ith test involves only the ith sample., Here ¢(¢) is the cumulative dis-
tribution function of the standard normal distribution. The parameter p(§)
completely determines the run-length distribution and thus the behavior of
this procedure can be summarized conveniently and naturally in terms of
this probability of a signal on a given occasion. In addition, if we let
61 be a value of § that represents a shift of interest, then the quantities
p(0) and 1-p(51) can be thought of as the probabilities of errors of the
first and second type, respectively, for testing the statistical hypothesis
H: § = 0 against A: § = 61. This formulation using the concepts and ter-
minology of hypothesis testing is very natural to statisticians.

The drawback underlying p(8) as a general parameter for process
control procedures for detecting changes in § 1is that it may not be mean-
ingful for more complicated procedures such as cumulative sum (CUSUM) con-

trol charts, moving average charts, or Shewhart X-charts with estimated




variance. For example, the probability that a CUSUM chart signals on oc-
casion i is not independent of 1 since, for this procedure, the decision
at stage i depends on X,, X,, ... ,X,; ; in addition to X ,. When the pro-
cess variance is unknown and must be estimated from preliminary samples,
the procedure no longer entails a sequence of independent tests and the
run—-length distribution camnot be characterized by the probability of a
signal at a given point. Thus, for general process control procedures,
some additional measures or parameters are needed to describe the run-
length distribution. One commonly used parameter is the mean Ee(N), called
the average run length (ARL). Another useful parameter is Pe(N < t), where
t is a fixed value.

One objective of this paper is to determine which of the measures
associated with the run-length distribution are most important in deter-
mining the characteristics of the procedure. This is done through the
development of a simple economic model in Section 2. Another objective
is to examine the properties of the X-chart when the variance of the pro-
cess must be estimated. In Section 3, various methods of estimating the
variance are discussed and the effect of estimated variance on the ARL is
investigated. Properties of the X-chart are usually calculated under the
assumption that o is known, but our results indicate that the actual
properties of the X-chart when o is estimated can be quite different from
the properties for the case when ¢ is kmown. This distinction is often

ignored in the literature. Section 4 extends the results of Section 3 to

the two—sided X-chart.

2. AN ECONOMIC MODEL

To determine the characteristics of the run length distribution that

are important determinants of the properties of a control chart, we may use
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an economic model that evaluates the impact on income and costs associated

with the use of a particular control chart (see Duncan (1956)). The economic
models that have been developed in the literature usually express the long-
term average net income per unit time for the process as a function of vari-
ous process parameters and of various parameters associated with the control
procedure. The usual objective in the design of control procedures is to
maximize this net income.

A simplified economic model will now be developed to show how the character-
istics of the run-length distribution enter into the model. This model is
for a general process control procedure for controlling the general parameter
8 in contrast to models in the literature which are specific to the procedure
and parameter. Assume that the process is operating in control when the con-~
trol procedure is first applied and, for simplicity, let the unit of time
correspond to the time interval between samples. At some random time To
(counted from the start of the procedure), the process mean shifts away from
the control value 90. Assume for simplicity that there is only one possible
out-of-control state represented by the value 61. After the shift from eo
to el the process remains at 61 until the control procedure detects the out-
of~control situation and rectifying action is taken to return 8 to 60. Ano-
ther in-control-out-of-control production cycle then starts at the instant
when 6 returns to 60. Thus, the long-term application of a control procedure
involves an infinite sequence of these in-control-out-of-control cycles.

By considering income lost due to operating the process out of control '
as a cost, the objective of maximizing the long-term average net income per
unit time can be reformulated as a problem of minimizing the long-term aver-
age cost per unit time. In each production cycle the primary costs are those

due to false alarms, to operating out of control, and to sampling. The long-

term average cost per unit time is obtained by finding the expected cost per

cycle and then dividing the latter by the expected length of a cycle (see

Johns and Miller (1963)).




Let T represent the time (counted from the start of the cycle) when
the procedure detects the shift and 9 is returnmed to eo. Then T is just
the random cycle length. Let W represent the number of false alarms dur-
ing the part of the cycle when the process is in control. The cost per

cycle can then be represented by

C= cl(W) + cz(T-To) + c3(T),
where the functions ys S5 and ¢y are given by

cl(w) = cost due to w false alarms during a cycle,
cz(t) = cost due to operating out of control for t time units,

c3(t) = cogt of sampling during a cycle of length t.

The long run average cost per unit time is therefore
A = E(C)/E(T).

It seems reasonable to assume that the cost of false alarms, cl(W), is
directly proportionmal to W so that cl(W) = alw where ay is a constant. In
this case E(cl(W)) is approximately equal to alE(TO)/Ea (N). This approxima-

0

tion can be justified as follows. Let Nl’ NZ’ ...,NW be the sequence of rum

lengths between false signals during the in-control part of the cycle, and
let NW+1 be the run length after N,; that would be required for a signal if the

shift from eo to el does not take place. Then NW+1 has the same distribution as

Nl' Thus
W W1
IN, <T. s Z N
a1 2 07yt

W
and, since Ee ( T Ni) = E(W)Ee ),
0 \i=1 0

E(TO)/EQO(N)-I S EW) < E(To)/aeo(N).




In many cases it may be reasonable to assume also that cz(t) is of the
form azt where a, is a constant. Neglecting the fact that a shift can
occur between samples and assuming that the expected time to detect the
shift does not depend significantly on how long the control procedure
has been running in control, E(cZ(T-TO)) is approximately equal to
azEel(N). The expected cycle length E(T) is approximately E(TO) +
Eel(N). The sampling cost c3(T) depends only on T and n. The long-
term average cost per unit time then can be expressed as

alE(TO)/ESO(N) + azEe (N) + E(c3(T))
A L )
E(TO) + Eel(N)

Thus A depends on the run-length distribution primarily through the ARL
values EBO(N) and Eel(N). This suggests that, if the economic model is
a reasonable representation of the actual cost and loss structure, the
primary measure of the effectiveness of control procedures is the ARL.
There may be situations, however, where the function cz(t) is not
linear in t. For example, a small amount of low quality material pro-
duced while operating out of control may not be particularly damaging,
but if the out-of-control time exceeds a certain value then a complete
production run may be jeopardized. In this case the cost function could
take the form cz(t) =0 4if t < t, and cz(t) = aé if t > t;- In other
cases a cost function of the form cz(t) = t:2 might be appropriate. Thus,
in addition to the ARL, parameters such as Pe (N>tl) or Ee (NZ) may be

1 1
of interest in particular applications.

3. ONE~SIDED X-CHARTS WITH UNKNOWN VARIANCE

In this section we consider the one-sided Shewhart X-chart for de-

tecting shifts in the positive direction in the mean of a process having




a normal distribution. A one-sided X-chart for detecting shifts in the

negative direction can be obtained by using a lower limit and the results
- obtained in this section can be applied by replacing § with ~¢§ where, as
k before, § = (u -~ uo)vﬁ7c. The two-sided X~-chart will be discussed in Sec-
tion 4.

When the variance of the process is unknown, some form of estimate of

L the variance must be used in the construction of the control limits for the

chart. The estimate of the variance can be obtained from the information

in each sample, or from an initial sequence of samples, or from a combina-
tion of the two approaches where the initial variance estimate is updated

as each new sample is taken. The variance estimates are traditionally based
on either the sample variance or the sample range. Since the sample vari-
ance is more efficient than the sample range, we will restrict attention

to situations where sample variances are used. We now look at the impli-

. cations of the various ways of estimating 02 as they bear on the properties
of the X-chart.

If the sample variance

2
Si

[ -]

= 2
%y %)/ (@=1)

j=1

for stage i is used as the variance estimator at stage i, then the procedure

that signals at the first i for which

Xi 2 Ho + kSi

is a sequence of independent tests. The parameter

p*(8) = 1’(Xi 2 uy * ksi)




-

anantion =

can be calculated using the noncentral t-distribution for any value of §
and the ARL of the procedure is 1/p*(8). This procedure is not used widely
in pracztice because n is usually too small to provide a reasonable estimate
of 02 when each sample is used independently. In addition, the procedure

must be carried out in its standardized version

in order to have the same upper limit at each stage, and this may inhibit
a visual interpretation of the plots since the chart is not showing the
actual sample means.

A second approach to the estimation of 02 involves the use of the same
initial estimate for each stage. In most cases this initial estimate is
based on a sequence of r initial samples, each of size m. In addition to
providing a variance estimate, these r samples can be examined further to
determine whether the process was in control with respect to variance at
the time that these samples were taken. If the r sample variances are
pooled to obtain the estimator
S2 = ; Si/r

i=l

then the procedure signals at the first i for which

X, > H~ + kS.

i 0

This approach has the advantage that the chart shows the actual sample means.
Since the same S is used at each point, the procedure no longer entails a
sequence of independent tests, and the run-length distribution will not be

geometric. In this case the parameter

ol (&) = PX, 2 ug + kS)

Yo

will not suffice to characterize the run-length distribution.
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As an alternative to the pooled estimate of 02 from a sequence of ini-
tial samples, one large initial sample can be taken to estimate cz. A dis-
advantage of this approach is that it is not possible to test for control
of the variance at the time the sample was taken.

A third approach to estimate 02 uses some kind of initial estimate and é
then updates the estimate as each new sample is taken. Although this method
appears reasonable as long as the process variance is fixed, additional com~
putational effort would be required and the control limits would change after

each sample. In addition, the properties of such a procedure are quite dif-

T

ficult to determine.
A common practice in setting up a control chart is to take k = 3//n re-
gardless of whether 02 is known or estimated from a small sample (for example,
see Duncan (1974)). Various authors (cf. King (1954), Proschan and Savage i
(1960), Hillier (1964), and Yang and Hillier (1970)) have considered the

problem of choosing k when 02 is estimated. Yang and Hillier (1970) proposed

that k be chosen to give a specified value of p+20)- If the estimator S2 has

v = r(m1) degrees of freedom, then the choice

k = £, () //a
-a

gives p+(0) = @, where tl—a(V) is the l-g fractile of the t-distribution
having v degrees of freedom. By choosing tl_a(v) corresponding to o = .00135,
the value of pf(O) will be the same as the value of p(0) for k = 3//n. Of
course, tl_a(v) can be chosen to give any other desired value of p+(0). The
problem with this approach is that the run-length distribution and ARL are still
unknown. It will be shown later in this paper that the actual ARL for the pro-
cedure using S as an estimator for ¢ can differ substantially from the ARL

calculated under the assumption that p+(0) = p(§).
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If the estimator S2 for 02 is a sample variance or a pooled sample var-
iance based on v degrees of freedom, then vSZ/a2 has a chi-squared distribu-
tion with v degrees of freedom when the process distribution is normal. Con-

sequently the run length N satisfies

P(N>t¢t) = P(’ii <ug +kS, i=1,2, ... ,t)
=/ o (-5 +5 D) £ _(s)ds
0 4] S
= P(;v) g Qt(—d + c/ﬁ}u%(v-z)e-udu (3.1)

where fs(s) is the density of S, and ¢ = kY2n/v. Unfortunately the integral
in (3.1) cannot be expressed in a simpler closed form. Nevertheless, certain
results for the run-length‘distribution can be established using (3.1). These
results are given in the following thecrems, and the proofs are given in the
Appendix.

THEOREM 1. For all values of k and §, P(N < ») = 1 and lim P(N > t) = ¢°(-6+k/).
. Y0

This theorem implies that the X-chart using an initial estimate of ¢ eventually
will signal, whatever the values of u and ¢ may be. Moreover, as the number

of degrees of freedom for the initial estimate of 02 grows larger, the distri-
bution of the run length converges to the geometric distribution for the case
where cz is known. The results given in this theorem hold without the assump-
tion of normality.

The ARL of the X-chart can be expressed as

E(N) = T P(N > t).
t=0

Using this expression the following theorem can be proved.
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THEOREM 2.

(a) If ¢ < v2 then E(N) < = for all .

(b) If ¢ > /2 then E(N) = = for all s.

(c) If c = /2 then E(N) < = fo? § >0 and E(N) = » for 6 s O.
(d) If E(N) < » then

1 > u&(v~2)e-u

B0 T T ws s o

du, (3.2) 1

(@) 1lim E(N) = [1 - ¢(~6§ + k/@) 1°L.
=

This theorem gives the rather surprising result that under certain conditions
the ARL of the X-chart with estimated variance is not finite. The condition
c > 2 1is equivalent to the condition v < kzn. Thus if v, the number of de-
grees of freedom in the estimate of 02, is sufficiently small, the ARL is not

finite. In particular, if k is taken as the ¥/n (the standard 3-sigma limits)

then ¢ > v2 if v < 9. If we take k = tl_a(v)//E; following the suggestion in

Yang and Hillier (1970),then c > v2 whenever v < ci_a(v) (e.g. when o = 0.001

the ARL is not finite if v < 14). However, if v is large, say 100, then
c < v2 if k/n < 9.95 and the ARL will be finite for values of k and n that
are likely to be used in applications.

The following gemeral bound for the run-length distribution can be obtained.
THEOREM 3. For all values of §, k, and v,
P(Nst) sl- (l-p (.

‘Thus the run-length distribution is stochastically larger than a geometric

distribution with parameter p+(5). This theorem holds regardless of the form of
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the underlying distribution of the observations, although computation of p+(6)
may be difficult for non-normal distributions. If the underlying distribution
is normal then

pT(8) = P(E(v,8) > kvD) )

where t(v,8) has a noncentral t-distribution with v degrees of freedom and
noncentrality parameter 8. Suppose k is chosen as k = t (v)//_, following
the suggestion of Yang and Hillier (1960). Then, when the process is in con-
trol, the geometric distribution with parameter a serves as a stochastic
lower bound for the run-length distribution. The theorem also provides a

lower bound for the ARL since
-f.
E(N) 2 1/p (u) .

Sharper bounds for the ARL under the assumption of normality are given

in the following theorems.
THEOREM 4. If O <c < v2 and § = 0, then

b,b

1P E(N) < b.b (3.3)

173
where

Y
(2m) “T((v+l)) =ls(v+1)
b1 r(sv) ¢ (1 )

= Y% + max<{k, 2-c ) rg5v2
crm P(%(v+1)

’

b,

2 2%
by = 1+ min 2-c 5, <2;c ) *r(sv)
(v-1e e2T (3 (v+1))

THEOREM 5. If O < ¢ < V2 and § > O, then

&
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(0 L P2V < 268%/c%) + D max [A-8B, BAHF((2/7) -k6)B]

j < E(N) < 2P(x2(v) s 26%/c?) + D{A+(1-6)B}, (3.4)

where

D = (4m) ¥ Gs(v1)) (1 D) E D) n 162/ (2-cD) )

v 2 2.5 v-1
A=ve L alP(x (vl-j)>d), B = 2(1-%")* I b

2
PO (v-1)>d),
jmo 3 j=0 1

d = 262{c2(1-%c2)}-1 R
a = 13 (e (gires(me-)t
by = 13 (sca-e®) M (3ires(v-i 1t

and where xz(v) represents a chi-square random variable having v degrees of

freedom.
THEOREM 6. If ¢ = v2 and § > O, then
A1/¢<5) + K max[vA3-62A2, %vA3 + ((!svr);5 - %G)AZJ

< E(N) € 2A1 + K[vA3 + 6(1—6)A2] . (3.5)

where

Ys(v+l)

K=2

2
rs(vl))e®® /st

A, = (s,
A, = P(x2(2v) < 262), Ay =~ P(x2(2v +2) > 262) .

Thus far we have examined the run-length distribution under the assump-
tion that § is constant for each sample. In many situations the shift away
from the control value may take place gradually as a drift over a period of

time. Suppose that 61 is the value of § when the sample §1 is taken so that

§ = (61, é ...) represents the set of values of § corresponding to the

2!

sampling occasions. We now investigate the distribution of N as a function

of §. I
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THEOREM 7. 1If § and §' are two sequences such that 6y s Gi for all i, then
P(Ns<st) sP (N <t).

§ )
The point of the theorem is that, whatever the form of the deviation from
the control value, the larger the shift the smaller the detection time. The
computation of the distribution of N for arbitrary 8 is difficult. However,
if § is bounded as § < 61 < §, for all i, then letting §= (8, & ...) and

E* (8, §, ...) we have that

PQ(N st) < PQ(N <t) s PE(N <t).

Thus the run-length distribution under the assumption of a gradual drift can
be bounded by run~length distributions for constant process mean. The con-
clusion of this theorem can be shown to hold under the general condition that
the observations are from a location parameter family with location parameter
s.

In order to determine the effect of estimated variance on the properties
of the X-chart, P(N > t) and the ARL were calculated using numerical integra-
tion. For the case where n = 4 and k = 3//n (the standard three-sigma limits),
Table 1 gives the ARL and Table 2 gives P(N>t) for several values of v and
§/va = (u-uo)/o. From Table 1 we see that the ARL is larger for small values
of v than it is for the case where ¢ is known (v=®»). From Table 2 we see that
P(N>t) is smaller than expected when § = 0 and t = 100 but larger than expected
for § > 0. For example, if v = 29 the probability of stopping before 100
observations when in control is 0.2038 compared to 0.1264 when v = ». But if
5//a = 1, the probability of taking more than 20 samples to detect the out-of-
control situation is 0.0796 instead of 0.0316 when v = =, One effect of using
an estimated variance is to increase the variance of N. This explains the
fact that,when § = 0, E(N) increases as v decreases while P(N > 100) decreases

as v decreases.
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The ARL values are larger for small values of v, and the effect of
using limits based on the t-~distribution in place of the three-sigma limits
is to increase the ARL values even further. This suggests that if the
desired ARL values are those calculated for three-sigma limits when o is
known, then the limits for the case where o is estimated should be reduced
rather than increased. (Note that this is contrary to the recommendation
of Yang and Hillier (1970)).

An additional complication arises in the estimation of ¢ when r initial
samples of size m are tested for control with respect to variance before
being used to estimate o. The usual practice is to set up a control limit
and discard any sample from among the r samples that exceeds the control
limit. 1If we let S* be the resulting estimate of ¢ then S* and S have dif-
ferent distributions. The run length N* for the X-chart in this case satis-

fies
P(N* > t) = é PE(X, s ugy + ks[S*=s)fg,(s)ds.

Now S based on the original sample is stochastically larger than S* and
(assuming k > 0) P(ii < Mg + ksIS* = g) is increasing in s so that P(N*> t)
< P(N > t). This implies that E(N*) < E(N). Thus the effect of testing for

control when the initial samples are taken is to reduce the ARL.
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4. RESULTS FOR TWO-SIDED SHEWHART CHARTS

In some situations it is desirable to detect shifts in either direction
from the control value Mge For this problem it is not necessary that the
control limits be symmetric about uo, but symmetric limits usually are used
in practice and we consider this case for simplicity. If an initial estimate
S based on v degrees of freedom is used to estimate O, then the two-sided

X~-chart signals at the first i for which

|x 2 kS.

- ul 2

i
Let N, N', and N" denote the run lengths of the one-sided chart for posi-

tive deviations, the two-sided chart, and the one-sided chart for negative

deviations, respectively. If the three procedures are applied simultaneously

using the same value of k then it follows that

N' = min{N,N"}.

Using the results and approach of Theorem 1 for the one-sided case we have
that P(N' < =) = 1 and 1im P(N < t) = [&(-6 + k/@) - 8(-8 - k/m 1.
V0o
Corresponding to THEOREM 2 for the one-sided case we have the following

result for the two-sided case.

THEOREM 8.

(a) If ¢ < Y2 then E(N') < o,

(b) 1f ¢ > v2 then E(N') = =

(¢) Ifc= ¥2 then E(N') < o for § # 0 and E(N') = = for § = 0,

(d) 1If E(N') < = then

' 1 ; u;’(\’-z)e.u
EN') = 745 o TS/ + W5 /) du

() lim E(N') = [1-0(=8 + kvh) + 8(=6 - kva) T}
Voo

The stochastic bound for the run-length distribution based on the
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geometric disctribution also holds for the two-sided case when the parameter
p+15) is replaced by

p' (&) = (X, - uyl/s 2 w).

When the underlying distribution is normal,
p'(8) = P(jt(v,8)| > krn).

When & = Q, the exprgssicn for E(') given in Theorem 8(d) reduces to
E(N)/2 where E(N) is given by Theorem 2(d). Thus bounds for E(N') for the
case 0 < ¢ < /2 and 6 = O can be obtained from the bounds for E(N) given in
Theorem 4.

Since N' = min(N,N") it follows that an upper bound for E(N') is given
by min(E(),E(N")). When 0 < ¢ < Y2 and § > 0 an upper bound for E(N) is
given by Theorem 5. When O < ¢ < v2 and § < 0 an upper bound for E(N") can
be obtained from Theorem 5 by using -6 in the bound for E(N).

Corresponding to Theorem 7 for the one-sided case, we have the following

theorem concerning the behavior of N' as a function of §.
1]
THEOREM 9. If § and §' are two sequences such that ]éi[ < !Gi( for all i,

then PG(N <£t) s PG,(N s t).

This result holds for any underlying distribution which is symmetric and

unimodal.
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APPENDIX

PROOF OF THEOREM 1. For any positive integer t
p(N>:)=fq>(s+ /')dF(s) (A1)

Since o° (=6 +— ks vn) + 0 as t + @ and 6(-§ + /FB for every s, it follows ;
from the dominated convergence theorem that
11mP(N>:)=fum¢(5+ksf')dF(s)=o
£ 0 tow
Hence P(N < ») = 1, Since $ -+ 5 a.s. as v > « and ¢(-§ + %§-¢;3 is contin~

uous and bounded, it follows that

1im P(N > t) = lim f ot (s +-—- /a)dF (s) = ot (s + k/m).

V>0 v+ 0

The conclusions of the theorem hold under the more gemeral condition that

the distribution of the observations be continuous with finite second moments

and support (-w=,»),

PROOF OF THEOREM 2. Denote the right-hand side of (Al) by a, for t =
0’ 1’ 2, tee o and let

> t
g(t) = I az for [z < 1. (A2)
t=0
Then a_ 2 0 for all ¢t and E(N) = I a .
t=0
For part (a), if ¢ < O then ®(c/u~-8) < #(-§) for all u > 0, and a, E_Qt(-6)

for all t. Since 0 < ¢(-8) < 1 for all &, ta_ is absolutely counvergent
and E(N) 1s given by (3.2). 1If O < ¢ < vZ then by Tauber's second theorem,

lim g(g) = M < w==p 3 a, =M,
gl t=0

Now, for sufficiently small |z|, we find




© uli(v-Z)e-u

(t) = i) du (A3)
& I'(3sv) 0 1"C4’(‘5+C*/l7)
and we shall show that g(z) is convergent for all |z|sl. Using (see
Birnbaum, 1942)
1-e(y) > ‘——231%2——— fory >0, (As)
y + (y7+4)

where ¢(y) is the standard normal density, we get

2¢(c/u=5)

1 - °(C/E-6) > ;i
cva-s+ {(cvam§)2+4)

if /u > g§/c.

Hence, if §<0 and 0 < ¢ < 1,
1452 = 2., 5. B(v-2) -~u(l-kc?)-gcv
[e*® V2Z7/2zr(sv) ] J [c/u=s+{(c/u-8) “+4}2Ju>"Y e dusH <a.
0

Thus, g(z) exists for all |g| < 1, and (3.2) follows by letting g - 17, If
§ > 0, the proof is similar. One now splits the range of integration in (A3)

into [0,52/c2] and [szlcz,m], and applies the technique above to the second

integral.
For part (b), by Abel's theorem, 1
b a <= =>1lim g(z) = ¢ at. i
t=0 g+l t=0
Using (see Pollak, 1957)
26(y)
1 - 3(y) < 2 5 fory > 0 (A5)
y + (y"+8/m)
we get
1 - ¢(c/u=8) < 2¢ (c/u-4) if Ju > §/c.

o/ - 5 + ((c/u-8)2 + 8/n} 7

Hence, if § < O,
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2 @ 2
2(0) > (5 Br/ar )] S [evams + {(c/a-8)? + 8/n}Re v L-tae)-0cru,
0

The right-hand side diverges for = 1 and, since g(g) is continuous at

z =1, 1im g(¢) = =, Consequently, E(N) = Zat = » for all § £ 0. The proof
Z+1-
is similar when 6 > O.

For part (c), if 8<0, we find g(1) = = by the method of part (b), and E(N)=w=.
If § > 0, we find

%62 u!s(v-z)e-u © 15(\)—2)e-u L

1 u
8(%) = a9t é T-ca(=ore ) 0 °F ;52 T-2a(=6rc /) %35 T 1w

62 L(w2) -u eli(gz/z—n' %62 2 3. B(w2) -6v2u.
u1 e du +EI‘-(—%7)- S [VZ:—G'F{(VTu—G) +4 }/E:lu e du

0

O

.- < H

a and (3.2) follows.

’ * To prove the last part, we note S * ¢ in probability, and h(S) =
. k/n .l )
| (1 - 3(~8 + e S)]"is a continuous function. Consequently, h(S) - h(g) in
probability. It suffices now to show that sup E(hz(s)) < » (see Loeve, 1963,
“ Corollary 2 on p. 164). Using the facts that 1 - &(x) > 1 - ¢(x0) for x < X,

1

and 1 - #(x) 2 ¢(x)(x = - x_3) for x > Xy where Xq > 0 is fixed, it can be

L shown after some algebra that q

[1- 0(-8 +k—0—‘/‘_‘

$)172 < [1-0(2+]8])172 if s<(2+|8|+8)a/k/a :

2624+ g2
< 2nr e

1f  S2(2+|8|+8)a/kvn




-
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2 2

AS ~v/2

B(e*S) = (=202 ™2 ¢ (ol THE
2 ) 2
for v > 2A0"+1, it follows that Suva(h (S)) £ M, where
-2 252 2, Ao+
M= [1-¢2+|8])]1° + 2re (1+2x¢“) .

Consequently, E(N) - El—@(-6+kfg3]-l as v » =,

PROOF OF THEOREM 3. From (3.1) we have

PN > 1) = E((-6 + E2 /),
Since ¢tis a convex function of ¢, Jensen's inequality gives
POV > £) 2 E(a(-6 + K5 /)"
= (X, - u)/s s k)°
i 0
The theorem follows easily from this result. Note that the argument would

apply to any distribution functionm so that the conclusion of the theorem is

alsoc valid for non-uormal distributions with finite variance.

PROOF OF THEOREM 4. We use the basic expression (3.2) where § = 0. Using

(AS) for 1 - 9(cvu) we get

b = 5 2
BN 2 53200 f fo/a o+ (P + 8mT] QIR ety
T ]

Since c2u+8/w,1 max{czu,B/w} for all u > 0, the right hand side above yields,

upon integration, the first imequality in (3.3), Similarly, using (A4) and

c/u + {c2u+4};5_<_min[2(c/n-1 + (1/evw)), 2(cvu*l)], u = 0,

in (3.2) we get the second inequality im (3.3).
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PROOF OF THEOREM 5. We shall use the basic expression (3.2) where § > O.

Write
E(N) = I1 + I2 s
where
B s2/c? m(v-2) Uy L e
L= S TRay 0 T 7 T0m)T 12,2 —1'79??7"—'0)
Since #(0) < ®(8-cv/u) < &(8) for all 0 < u < 62/c2, we find
@ eGP m s26%ch s 1 s 263 < 26876 (48)

1
Consider now IZ' Using (A4) and the fact {(c/ﬁ;6)2+4}1 < ¢/u ~ &+2 for

2 62/c2 one gets

=4

%8 2
21 e Iy 5 e+ 1-512(v-D) mu(l=beD)-sedu (A9)

1, € —F7r
2 T(sv). s/

1
Using (A5) and the fact {(C/;;5)2+8/W}€ > max[cv/u -8, /8/7] for u 2 62/c2

one gets
7 5(v-2) mu(145 D) - o/
I, » Y2 e s M(uw)u VP eI )= clu o a10)
2 T (%v) 52/ 2

where M(u) = 2(c/u -§) or cvu ~6+/8/7.

Inequalities (A8) through (Al0) lead to (3.4).

PROOF OF THEOREM 6. The result follows by writing ¢ = Y2 in (A8) through

(A10) and using the duplication formula for gamma functionms.
PROOF OF THEOREM 7.

pé(u >t) = Pé(ii - u. < kS, i=1, 2, ... ,t)

0
® ¢ ks

= 0 a(-sy + /n) £ (s)ds.
0 i=1

i
|
*J-I-.-IH-‘..‘--l.ﬂ-Ii--I.l--h----l-‘I-.I----n-Il-IIIIIII.I..I..I...........“i
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Since 0(-6i +-%? V;) is decreasing in 61 the result follows. Note that the
theorem holds under the more general condition that the observations are

from a location parameter family with location parameter §.

PROOF OF THEOREM 8. If either E(N) < = or E(N") < «» then E(N') < » since

N' = min{N,N"}. Part (a) holds since E(N) < = for c < v¥2., Now

2 S [e(-8 + c/u) - o(-s-c/G)Jtu%"Z)e'“ du (A11)

N
B =Ty L, !

which is symmetric about § = 0. Moreover, E(N') decreased in |§| so that

E(N') is maximized when & = 0. Using methods similar to the proof for Theorem
2(b), part (b) can be proved by showing E(N') = » when ¢ > ¥2 and § = 0. When
§ # 0 part (c) follows from the fact one of E(N) and E(N'") is finite. If

§ = 0 we must again use methods similar to the proof for Theorem 2. If E(N')

< = then part (d) holds since the summation and integration can be interchanged
in (Al1l). The proof for part (e) uses the same methods as the proof of Theorem

7(e).

PROOF OF THEOREM 9. Following the proof of Theorem 7,

o t
P.(N'>¢t) =/ 1 P, (|X, - u,| < ks|S=s) £_(s)ds
2 01=1 % t O S

Since Psi({ii - uol S ks|S=s) is decreasing in |6, the result follows. Note
that the theorem holds for any underlying distribution which is symmetric

and unimodal since this condition is sufficient to guarantee that the distri-
bution of ii is symmetric and unimodal and this, in turn, implies that

Pdi(rii - u0| < ks|S=s) is decreasing inlsﬂ.

T, ALl SP s 1= X 1 A gl $ e S0, 4 e it g TS et A

e i

eSS e WS I A R

S et k. 355 AL
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' u-u,
v=29 v=69 V=

g

n 0 2100.0 1088.6 740.8

o 2 ot
0.5 75.9 53.8 44.0
1 8.0 6.9 6.3
2 1.2 1.2 1.2
3 1.0 1.0 1.0

Table 1. ARL values when o is estimated with v degrees of freedom.

u-uo

5 t v=9 v=29 v=69 v=o

0 100 .6900 .7962  .8384  .8736

0.5 100 .2329 .1774  .1427  .1001
] 1 20 L1375  .0796  .0543 .0316
. 2 2 .0639 ,0382 .0307 .0252
t . 3 1 .0064 .0025 .0018 ,0013
3
3 _ Table 2. Value of P(N>t) when o is

! estimated with v degrees of freedom.
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